🦛 Diketahui Bahwa 1 1 3
Namunyang membedakannya proses kecepatan belajar. pada suatu saat ada peserta didik yang belajar dalam 1-3 pertemuan. ada juga yang membutuhkan 3 pertemuan lebih untuk dapat memahami materi Dengan kata lain, Belajar tergantung kondisi dan keadaan seseorang untuk memahami materi. baik itu cuaca, suasana, perasaan dan lingkungan yang mempengaruhi.
Postingankali ini akan membahas tentang Pembahasan Soal Analisis Real Bartle Bagian 2.3 yang terkait dengan Sifat Kelengkapan Bilangan Real. Materi tersebut meliputi supremum dan infimum suatu himpunan. Soal-soal berikut diambil dari buku "Introduction to Real Analysis" oleh Robert G.Bartle dan Donald R. Sherbert.
Jikadiketahui bahwa 1 x 1 cos 2 2x \u03b8 maka 22 1x x A 2 2tan sin\u03b8 \u03b8 B 22 tan sin. Jika diketahui bahwa 1 x 1 cos 2 2x θ maka 22 1x x a. School SMA Negeri 4 Bekasi; Course Title Science 101; Uploaded By MinisterHareMaster215. Pages 46 Ratings 100% (1) 1 out of 1 people found this document helpful;
Diketahuibahwa . Nilai n adalah 2015/2016 [Jawaban D] Selengkapnya dapat disimak pada pembahasan di bawah ini!. PENDAHULUAN. Deret Teleskopik adalah suatu deret bilangan dimana tiap sukunya saling menghilangkan satu sama lain.. Kembali ke soal, mari simak penyelesaiannya pada pembahasan di bawah ini! PEMBAHASAN. Diketahui:. Ditanya: nilai n adalah =?. Jawab
Diketahuibahwa (1+1/2)(1+1/3)(1+1/4)(1+1/5)(1+1/n)=11. Berapakah nilai n yang memenuhi? Dengan mengamati, tentukan nilai n yang yang memenuhil persamaan di atas.
Jawaban Ada dua cara dalam membuktikan bahwa 1+1=3, 1.Redefinisi simbol-simbol matematika Saya akan menciptakan makna yang baru dari simbol-simbol matematika, jadi menurut matematika saya, elemen bilangan asli (bilangan bulat positif) diawali dengan {1, 3 , 2 ,4 , 5, 6, 7, 8, 9 } oleh karena
Berikutini adalah Soal dan Pembahasan Matematika Dasar SIMAK UI Tahun 2013 dengan kode soal 333. Jika kalian ingin download soalnya aja terlebih dahulu, silahkan.
Tunjukkanbahwa $\lim (1/3)^n = 0.$ Jawab: Perhatikan bahw untuk setiap bilangan asli $n,$ berlaku bahwa $n<3^n.$ Dari sini, $$\frac{1}{3^n}<\frac{1}{n}$$Karena $\lim (1/n) = 0,$ maka berdasarkan teorema 1, diperoleh bahwa $$\lim \left( \frac{1}{3^n} \right)= 0$$ Soal 14 Misalkan $b\in \mathbb{R}$ memenuhi $04ZsCj. BerandaDiketahui bahwa 1 + 2 1 ​ 1 + 3 1 ​ ...PertanyaanDiketahui bahwa 1 + 2 1 ​ 1 + 3 1 ​ 1 + 4 1 ​ 1 + 5 1 ​ ⋯ 1 + n 1 ​ = 11 . Berapakah nilai n yang memenuhi ? b. Amati pola perkalian beberapa bilangan bahwa . Berapakah nilai yang memenuhi ? b. Amati pola perkalian beberapa bilangan awal. ... ... GAMahasiswa/Alumni Universitas Galuh CiamisPembahasanPola bilangannya ; pembilang dikali dengan n+1 dan penyebut habis dibagi dengan pembilang n+1, kecuali penyebut awal yaitu 2Pola bilangannya ; pembilang dikali dengan n+1 dan penyebut habis dibagi dengan pembilang n+1, kecuali penyebut awal yaitu 2 Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!92Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Subscribe!Klik di sini untuk berlangganan artikel melalui Telegram. Misalkan dan adalah ruang vektor. Berdasarkan definisi, keduanya merupakan himpunan tak kosong, sehingga kita bisa membentuk sebuah pemetaan fungsi dengan domain dan kodomain atau sebaliknya. Sebuah pemetaan dari ke disebut transformasi linear jika memenuhi syarat tertentu. Apa syaratnya? Simak baik-baik isi tulisan ini. Definisi Transformasi Linear Definisi Misalkan dan adalah ruang vektor. Pemetaan disebut transformasi linear jika dan hanya jika untuk setiap skalar dan . Lebih khusus, jika maka disebut operator linear. Operasi penjumlahan vektor pada dan mungkin berbeda, sehingga kita perlu memperhatikan vektor yang dijumlahkan. Perhatikan syarat pertama pada definisi transformasi linear. Vektor dan dipandang sebagai anggota , sehingga digunakan operasi penjumlahan vektor pada . Adapun dan dipandang sebagai anggota , sehingga digunakan operasi penjumlahan vektor pada . Hal yang sama berlaku pada operasi perkalian skalar. Soal dan PembahasanNomor 1Misalkan dan adalah ruang vektor. Jika adalah transformasi linear, maka buktikan bahwa PembahasanDiambil sebarang $\textbf{u} \in V$. Karena $\textbf{0} = 0\textbf{u}$, maka $$T\textbf{0} = T0\textbf{u} = 0T\textbf{u} = \textbf{0}$$ 2Misalkan dan adalah ruang vektor. Jika adalah transformasi linear dan , maka buktikan bahwa PembahasanDiambil sebarang $\textbf{u} \in V$. Karena $-\textbf{u} = -1\textbf{u}$, maka $$T-\textbf{u} = T-1\textbf{u} = -1T\textbf{u} = -T\textbf{u}$$ 3Misalkan dan adalah ruang vektor. Jika adalah transformasi linear dan , maka buktikan bahwa PembahasanDiambil sebarang $\textbf{u},\textbf{v} \in V$. Karena $\textbf{u}-\textbf{v} = \textbf{u}+-\textbf{v}$, maka $$\begin{aligned} T\textbf{u}-\textbf{v} &= T\textbf{u}+-\textbf{v} \\ &= T\textbf{u} + T-\textbf{v} \\ &= T\textbf{u}+-T\textbf{v} \\ &= T\textbf{u}-T\textbf{v} \end{aligned}$$ 4Misalkan dan adalah ruang vektor dan adalah vektor nol. Pemetaan didefinisikan sebagai Tunjukkan bahwa adalah transformasi sebarang skalar $k$ dan $\textbf{u},\textbf{v} \in V$. Perhatikan bahwa $$\begin{aligned} &T\textbf{u} + \textbf{v} = \textbf{0} = \textbf{0} + \textbf{0} = T\textbf{u}+T\textbf{v} \\ &Tk\textbf{u} = \textbf{0} = k\textbf{0} = k T\textbf{u} \end{aligned}$$ Dengan demikian, $T$ adalah transformasi 5Misalkan adalah ruang vektor. Pemetaan didefinisikan sebagai Tunjukkan bahwa adalah transformasi sebarang skalar $k$ dan $\textbf{u},\textbf{v} \in V$. Perhatikan bahwa $$\begin{aligned} &T\textcolor{green}{\textbf{u} + \textbf{v}} = \textcolor{green}{\textbf{u} + \textbf{v}} = T\textbf{u}+T\textbf{v} \\ &T\textcolor{blue}{k\textbf{u}} = \textcolor{blue}{k\textbf{u}} = k T\textbf{u} \end{aligned}$$ Dengan demikian, $T$ adalah transformasi 6Misalkan adalah ruang vektor dan suatu skalar. Pemetaan didefinisikan sebagai Tunjukkan bahwa adalah transformasi sebarang skalar $k$ dan $\textbf{u},\textbf{v} \in V$. Perhatikan bahwa $$\begin{aligned} T\textbf{u} + \textbf{v} &= m\textbf{u} + \textbf{v} \\ &= m\textbf{u} + m\textbf{v} \\ &= T\textbf{u}+T\textbf{v} \end{aligned}$$ Selain itu $$\begin{aligned} Tk\textbf{u} &= mk\textbf{u} \\ &= mk \textbf{u} \\ &= km \textbf{u} \\ &= km\textbf{u} \\ &= kT\textbf{u} \end{aligned}$$ Dengan demikian, $T$ adalah transformasi 7Misalkan adalah polinom dalam . Pemetaan didefinisikan sebagai Tunjukkan bahwa adalah transformasi sebarang skalar $k$ dan $\textbf{p}_1,\textbf{p}_2 \in V$. Perhatikan bahwa $$\begin{aligned} T\textbf{p}_1 + \textbf{p}_2 &= Tp_1x + p_2x \\ &= xp_1x + p_2x \\ &= xp_1x + xp_2x \\ &= Tp_1x + Tp_2x \\ &= T\textbf{p}_1+T\textbf{p}_2 \end{aligned}$$ Selain itu $$\begin{aligned} Tk\textbf{p} &= Tkp_1x \\ &= xkp_1x \\ &= kxp_1x \\ &= kTp_1x \\ &= kT\textbf{p}_1 \end{aligned}$$ Dengan demikian, $T$ adalah transformasi 8Pemetaan didefinisikan sebagai Periksa apakah adalah transformasi $A,B \in M_{2 \times 2}$. Perhatikan bahwa $$\begin{aligned} T\textcolor{blue}{A+B} &= \textcolor{blue}{A+B} + \textcolor{blue}{A+B}^T \\ &= A+B + A^T+B^T \\ &= A+A^T + B+B^T \\ &= TA + TB \end{aligned}$$ Selain itu $$\begin{aligned} T\textcolor{green}{kA} &= \textcolor{green}{kA} + \textcolor{green}{kA}^T \\ &= kA + kA^T \\ &= kA+A^T \\ &= kTA \end{aligned}$$ Dengan demikian, $T$ adalah transformasi 9Pemetaan didefinisikan sebagai Periksa apakah adalah transformasi $k$ adalah skalar dan $A,B \in M_{2 \times 2}$, dengan $$A=\begin{bmatrix}a_1&a_2\\a_3&a_4\end{bmatrix}, \;B=\begin{bmatrix}b_1&b_2\\b_3&b_4\end{bmatrix}$$Perhatikan bahwa $$\begin{aligned} &A+B = \begin{bmatrix}a_1+b_1&a_2+b_2\\a_3+b_3&a_4+b_4\end{bmatrix} &kA = \begin{bmatrix}ka_1&ka_2\\ka_3&ka_4\end{bmatrix} \end{aligned}$$ Sehingga $$\begin{aligned} TA+B &= \text{tr}A+B \\ &= a_1+b_1+a_4+b_4 \\ &= a_1+a_4+b_1+b_4 \\ &= \text{tr}A+\text{tr}B \\ &= TA+TB \end{aligned}$$ dan $$\begin{aligned} TkA &= \text{tr}kA \\ &= ka_1+ka_4 \\ &= ka_1+a_4 \\ &= k \ \text{tr}A \\ &= kTA \end{aligned}$$ Dengan demikian, $T$ adalah transformasi 10Pemetaan didefinisikan sebagai Periksa apakah adalah transformasi Misalkan $k$ adalah skalar dan $A \in M_{2 \times 2}$. Perhatikan bahwa $$T\textcolor{blue}{kA}=\textcolor{blue}{kA}^2=k^2A^2$$ dan $$kTA = kA^2$$ Jika $A$ adalah matriks nol maka keduanya bernilai sama. Namun, jika $A$ bukan matriks nol, keduanya bernilai sama hanya jika $k=0$ atau $1$. Jadi, sebagai contoh penyangkal, kita bisa memilih matriks identitas dan $k=2$. Terdapat skalar $k=2$ dan $\textbf{I} \in M_{2 \times 2}$ sedemikian sehingga $$Tk \textbf{I} = T2 \textbf{I} = 2\textbf{I}^2 = 4 \textbf{I}^2=4\textbf{I}$$ tetapi $$kT\textbf{I} = 2T\textbf{I}=2 \textbf{I}^2=2\textbf{I}$$ Karena $Tk \textbf{I} \neq kT\textbf{I}$, maka $T$ bukan transformasi 11Pemetaan didefinisikan sebagai Periksa apakah adalah transformasi Misalkan $k$ adalah skalar dan $\textbf{u} \in \mathbb{R}^3$. Perhatikan bahwa $$Tk\textbf{u}=\ k\textbf{u} \ = k \cdot \ \textbf{u} \$$ dan $$kT\textbf{u} = k \cdot \ \textbf{u} \$$ Jika $\textbf{u}$ bukan vektor nol, maka keduanya bernilai sama hanya jika $k \geq 0$. Jadi, sebagai contoh penyangkal, kita bisa memilih vektor $\textbf{u}=1,0,0$ dan skalar $k=-1$. Terdapat skalar $k=-1$ dan $\textbf{u}=1,0,0 \in \mathbb{R}^3$ sedemikian sehingga $$Tk\textbf{u} = T-1,0,0 = \ -1,0,0 \ = 1$$ tetapi $$kT\textbf{u} = -1 \cdot T1,0,0 = -1 \cdot 1 = -1$$ Karena $TkA \neq kTA$, maka $T$ bukan transformasi 12Misalkan adalah suatu vektor dalam . Pemetaan didefinisikan sebagai Periksa apakah adalah transformasi sebarang skalar $k$ dan $\textbf{u},\textbf{v} \in V$. Perhatikan bahwa $$\begin{aligned} T\textcolor{green}{\textbf{u} + \textbf{v}} &= \textcolor{green}{\textbf{u} + \textbf{v}} \textbf{w} \\ &= \textbf{u} \times \textbf{w} + \textbf{v} \times \textbf{w} \\ &= T\textbf{u}+T\textbf{v} \end{aligned}$$ Selain itu $$\begin{aligned} T\textcolor{blue}{k\textbf{u}} &= \textcolor{blue}{k\textbf{u}} \times \textbf{w} \\ &= k\textbf{u} \times \textbf{w} \\ &= k T\textbf{u} \end{aligned}$$ Dengan demikian, $T$ adalah transformasi 13Pemetaan didefinisikan sebagai Periksa apakah adalah transformasi $k$ adalah skalar dan $\textbf{p},\textbf{q} \in P_3$, dengan $$\begin{aligned} \textbf{p} &= px = a_0+a_1x+a_2x^2+a_3x^3 \\ \textbf{q} &= qx = b_0+b_1x+b_2x^2+b_3x^3 \end{aligned}$$ Perhatikan bahwa $$\begin{aligned} T\textbf{p}+\textbf{q} &= Tpx+qx \\ &= T[\textcolor{blue}{a_0+b_0}]+[a_1+b_1]x+[a_2+b_2]x^2+[\textcolor{green}{a_3+b_3}]x^3 \\ &= 5\textcolor{blue}{a_0+b_0} + \textcolor{green}{a_3+b_3} x^2 \\ &= 5a_0+5b_0 + a_3x^2+b_3x^2 \\ &= 5a_0+a_3x^2 + 5b_0+b_3x^2 \\ &= Ta_0+a_1x+a_2x^2+a_3x^3 + Tb_0+b_1x+b_2x^2+b_3x^3 \\ &= Tpx + Tqx \\ &= T\textbf{p} + T\textbf{q} \end{aligned}$$ Selain itu $$\begin{aligned} Tk\textbf{p} &= Tkpx \\ &= T\textcolor{blue}{ka_0}+ka_1x+ka_2x^2+\textcolor{green}{ka_3}x^3 \\ &= 5 \textcolor{blue}{ka_0} + \textcolor{green}{ka_3} x^3 \\ &= k5a_0+a_3x^2 \\ &= kTa_0+a_1x+a_2x^2+a_3x^3 \\ &= kTpx \\ &= kT\textbf{p} \end{aligned}$$ Dengan demikian, $T$ adalah transformasi 14Himpunan adalah basis dari , dengan dan . Misalkan adalah transformasi linear yang memenuhi Temukan formula untuk , lalu gunakan formula tersebut untuk menentukan PembahasanPertama, kita perlu menyatakan $x_1,x_2$ sebagai kombinasi linear dari $\textbf{v}_1$ dan $\textbf{v}_2$, yaitu $$x_1,x_2 = k_11,0 + k_2-2,1 = k_1-2k_2,k_2$$ untuk suatu skalar $k_1$ dan $k_2$. Berdasarkan kesamaan dua vektor pada $\mathbb{R}^2$, diperoleh $$\left\{\begin{alignat*}{3} k_1&\-\&2k_2 \=\ &x_1 \\ &&k_2 \=\ &x_2 \end{alignat*}\right.$$ Sistem persamaan ini mempunyai solusi $k_1=x_1+2x_2$, $k_2=x_2$ Periksa!. Akibatnya $$\begin{aligned} Tx_1,x_2 &= Tk_1\textbf{v}_1 + k_2\textbf{v}_2 \\ &= \textcolor{blue}{k_1} T\textbf{v}_1 + \textcolor{green}{k_2} T\textbf{v}_2 \\ &= \textcolor{blue}{x_1+2x_2} 3,0,2 + \textcolor{green}{x_2} -1,2,-4 \\ &= 3x_1+6x_2,0,2x_1+4x_2 + -x_2,2x_2,-4x_2 \\ &= 3x_1+5x_2,2x_2,2x_1 \end{aligned}$$ Dengan demikian, nilai dari $T-3,2$ adalah $$\begin{aligned} T\textcolor{blue}{-3},\textcolor{green}{2} &= 3\textcolor{blue}{-3} + 5 \cdot \textcolor{green}{2}, 2 \cdot \textcolor{green}{2}, 2\textcolor{blue}{-3} \\ &= -9+10,4,-6 \\ &= 1,4,-6 \end{aligned}$$
Postingan ini menyajikan pembahasan soal OSK Matematika tahun 2019 kemampuan dasar. OSK adalah Olimpiade sains tingkat Kabupaten / Kota Calon tim olimpiade Indonesia tahun 2020. Jumlah soal OSK matematika kemampuan dasar adalah 10 soal. Durasi waktu pengerjaan soal ini adalah 60 1 – Pak Budi memiliki sawah berbentuk huruf L. Jika diketahui bahwa sawahnya Pak Budi hanya memiliki sisi yang panjangnya 5 meter dan 10 meter dan semua sudut sawahnya siku-siku, luas sawah Pak Budi adalah… meter pak Budi dapat digambarkan sebagai berikutPembahasan soal OSK matematika 2019 nomor 1Berdasarkan gambar diatas, sawah Pak Budi terdiri dari 2 bangun yaitu persegi panjang warna merah dan persegi warna kuning.Luas persegi panjang = p x l = 10 cm x 5 cm = 50 cm2Luas persegi = s x s = 5 cm x 5 cm = 25 cm2Luas sawah = 50 cm2 + 25 cm2 = 75 cm2Soal 2 – Jika sebuah jam sekarang menunjukkan pukul 1300 maka 2019 menit yang lalu jam tersebut menunjukkan pukul…PembahasanUntuk menjawab soal ini kita konversi terlebih dahulu 2019 menit menjadi jam yaitu 2019 / 60 jam = 33,65 jam = 24 jam + 9,65 1 hari = 24 jam maka jam kembali ke pukul 1300 lagi. Jadi 2019 menit yang lalu menunjukkan pukul 13 – 9,65 = 3,35 = 3 + 0,35 jam. Selanjutnya 0,35 jam dikonversi ke menit menjadi 0,35 x 60 = 21 menit. Jadi jam saat itu menunjukkan pukul 03 3 – Kedua akar persamaan kuadrat x2 – 111x + k = 0 adalah bilangan prima. Nilai k adalah…PembahasanPada soal ini diketahui a = 1, b = -111 dan c = k. Misalkan kedua akar persamaan kuadrat x1 dan x2 maka berdasarkan rumus jumlah dan hasil kali akar-akar persamaan kuadrat diperolehx1 + x2 = – b/a = – -111/1 = 111x1 . x2 = c/a = k/1 = kBilangan yang tepat untuk x1 = 2 dan x2 = 109 karena 2 dan 109 bilangan prima2 + 109 = 1112 . 109 = 218Soal 4 – Ani dan Banu bermain dadu enam sisi. Jika dadu yang keluar bernilai genap, maka Ani mendapatkan skor 1 sedangkan jika dadu yang keluar bernilai ganjil, maka Banu yang mendapatkan skor 1. Pemenang dari permainan ini adalah orang pertama yang mendapatkan skor total 5. Setelah dilakukan pelemparan dadu sebanyak 5 kali, Ani mendapatkan skor 4 dan Banu mendapatkan skor 1. Peluang Ani memenangkan permainan ini adalah…PembahasanKarena pemenang permainan ini adalah orang yang mendapatkan skor 5 maka jumlah maksimal pelemparan = 9. Ani akan menang jika Banu kalah. Banu akan menang jika dalam 4 pelemparan terakhir muncul mata dadu bernilai ganjil. Peluang Banu menang sebagai berikutPeluang muncul mata dadu ganjil = 3/6 = 1/2Peluang Banu menang = 1/2 x 1/2 x 1/2 x 1/2 = 1/16Jadi peluang Ani menang = 1 – 1/16 = 15/16 menggunakan rumus peluang komplemen.Soal 5 – Diketahui a + 2b = 1, b + 2c = 2, dan b ≠0. Jika a + nb + 2018c = 2019 maka nilai n adalah…PembahasanPembahasan soal OSK 2019 matematika nomor 5Jadi n = 6 – Misalkan a = 2 √ 2 – √ 8 – 4 √ 2 dan b = 2 √ 2 + √ 8 – 4 √ 2 . Jika ab + ba = x + y √ 2 dengan x, y bulat, maka nilai x + y = …PembahasanPembahasan soal OSK matematika 2019 nomor 6Soal 7 – Diberikan trapesium ABCD dengan AB sejajar CD. Misalkan titik P dan Q berturut-turut pada AD dan BC sedemikian sehingga PQ sejajar AB dan membagi trapesium menjadi 2 bagian yang sama luasnya. Jika AB = 17 dan DC = 7 maka nilai PQ adalah…PembahasanTrapesium soal OSK matematika 2019Segitiga BXC sebangun dengan segitiga QYC sehingga berlaku hubungan sebagai berikutBXQY = CXCY 5QY = m + nn m + n = 5nQY Luas trapesium ABCD = 2 luas trapesium DCQP1/2 AB + CD . CX = 2 . 1/2 DC + QP . n1/2 17 + 7 m + n = 7 + 7 + 2 QY . n12 5n/QY = 14 + 2 QYn60 = QY 14 + 2QY2Qy2 + 14QY – 60 = 0QY2 + 7QY – 30 = 0QY – 3 QY + 10 = 0QY = 3 atau QY = -10QY = -10 tidak mungkin sehingga panjang PQ = 7 + 2 QY = 7 + 2 . 3 = 8 – Tujuh buah bendera dengan motif berbeda akan dipasang pada 4 tiang bendera. Pada masing-masing tiang bendera bisa dipasang sebanyak nol, satu atau lebih satu bendera. Banyaknya cara memasang bendera tersebut adalah…PembahasanUntuk menjawab soal ini kita gunakan permutasi P 10, 7 sebagai berikutP 10, 3 = 10!10 – 7! P 10, 3 = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3!3! P 10, 3 = 9 – Misalkan n adalah bilangan asli terkecil yang semua digitnya sama dan sedikitnya terdiri dari 2019 digit. Jika n habis dibagi 126, maka hasil penjumlahan semua digit dari n adalah…PembahasanBilangan terkecil dengan digit sama yang habis dibagi 126 adalah 6 digit. Angka selanjutnya adalah 6 sebanyak kelipatan dari 6 12, 18, 24 dan seterusnya, contohnya sebagai berikut 12 digit 18 digit 24 digitDan seterusnyaPada soal ini sedikitnya terdiri dari 2019 digit, sehingga tentukan kelipatan 6 setelah 2019. Caranya kita bagi 2019 dengan 6 2019 6 = 336,5 atau dibulatkan menjadi 337. 6 x 337 = 2022. Jadi bilangan terkecil yang semua digitnya sama dan sedikitnya terdiri dari 2019 digit adalah 6 sebanyak 2022. Jika dijumlah maka hasilnya adalah 6 x 2022 = 10 – Untuk sebarang bilangan real x, simbol ⌊x⌋ menyatakan bilangan bulat terbesar yang tidak lebih besar daripada x, sedangkan ⌈x⌉ menyatakan bilangan bulat terkecil yang tidak lebih kecil dibanding x. Interval a, b adalah himpunan semua bilangan real x yang memenuhi ⌊2x⌋2 = ⌈x⌉ + 7. Nilai a . b adalah…Pembahasan⌊2x⌋2 = ⌈x⌉ + 74x2 – x – 7 = 0a = 4, b = – 1 dan c = – 7Determinan D = b2 – 4acD = -12 – 4 . 4 . -7 = 113 bukan bulangan kuadrat sempurna sehingga x bukan bilangan bulatx bukan bilangan bulat, misalkan x = ⌊x⌋ + α 0 < α < 1/2 maka ⌊2x⌋ = 2 ⌊x⌋ dan ⌈x⌉ = ⌊x⌋ + 1⌊2x⌋2 = ⌈x⌉ + 72⌊x⌋2 = ⌊x⌋ + 1 + 74⌊x⌋2 = ⌊x⌋ + 84⌊x⌋2 – ⌊x⌋ – 8 = 0Determinan D = b2 – 4acD = 12 – 4 . 4 . -8 = 129 bukan bilangan kuadrat atau x bukan bilangan bulatx bukan bilangan bulat, misalkan x = ⌊x⌋ + α 1/2 < α < 1 maka ⌊2x⌋ = 2 ⌊x⌋ + 1 dan ⌈x⌉ = ⌊x⌋ + 1⌊2x⌋2 = ⌈x⌉ + 72⌊x⌋ + 12 = ⌊x⌋ + 1 + 74⌊x⌋2 + 4 ⌊x⌋ + 1= ⌊x⌋ + 84⌊x⌋2 + 4 ⌊x⌋ – ⌊x⌋ + 1 – 8 = 0 4⌊x⌋2 + 3 ⌊x⌋ – 8 = 0Determinan D = b2 – 4acD = 32 – 4 . 4 .- 8 = 121 kuadrat dari 11⌊x⌋1,2 = -3 ± √ 32– 4 . 4 . -8 2 . 4 ⌊x⌋1,2 = -3 ± √ 121 8 ⌊x⌋1,2 = -3 ± 118 ⌊x⌋1 = 1 atau ⌊x⌋2 = – 14/8 = – 7/4 tidak mungkin x = ⌊x⌋ + αx = 1 + 1/2 = 1,5x = 1 + 1 = 2Jadi a . b = 1,5 x 2 = 3
diketahui bahwa 1 1 3